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Sub-barrier fission probability for a double-humped barrier 

J E Lynn and B B Back 
UKAEA, Harwell and Niels Bohr Institute, Copenhagen 

Received 25 October 1973 

Abstract. The interpretation of data on the decay of actinide nuclei by the fission process 
at excitation energies below the fission barrier is considered. It is shown that the intermediate 
structure (class-I1 levels), introduced into the fission strength function by the presence of a 
.secondary well in the potential energy of deformation through the fission barrier, has a 
decisive effect in reducing the probability of fission decay at these energies. I t  is indicated 
how fission barrier parameters may be extracted from the data. Some actual examples given 
in this paper demonstrate the existence of an o d d w e n  effect in fission barrier heights relative 
to the nuclear ground state. 

1. Introduction 

For present studies of nuclear structure at large deformations it is particularly important 
to have precise determinations of fission barrier parameters. Such determinations are 
complicated by the very factor that makes them so interesting, namely, the discovery, in 
actinide nuclei, of the double-humped barrier, which is explained by the theoretical work 
of Strutinsky (1967), and which provides a mechanism for the phenomena of spon- 
taneously fissioning isomers (Flerov and Polikanov 1964, Lark et a1 1969) and structure 
in the energy dependence of fission cross sections (Fubini et a1 1968, Migneco and 
Theobald 1968). The barriers of many actinides, particularly odd-neutron, even-proton 
and doubly-odd nuclei, are higher than the neutron thresholds, and the presence of 
competition from neutron emission, comparable in strength to the fission decay of the 
compound nucleus, gives rise to a strongly increasing fission cross section close to the 
actual barrier height (which is taken as the greater of the two barrier maxima). For even 
compound nuclei, as well as odd-proton, even-neutron systems, the fission barrier is 
generally below the neutron threshold, and only the weak electromagnetic radiation 
process is in competition with fission. The actual strong fall in fission yield from such 
nuclei excited to below the neutron threshold by transfer reactions such as (d, p) and 
(t, p) can therefore occur some considerable energy below the barrier, and careful inter- 
pretation is necessary to deduce the true barrier height. I t  is the purpose of the present 
paper to draw attention to the effect on the fission probability ofthe detailed structure of 
the class-I1 compound levels associated with the secondary well of the double-humped 
barrier for such compound nuclei. 

2. Calculation of sub-barrier fission probability 

2.1. Fission probability for uniform levels 

The transmission coefficient for fission is denoted by TF( = 27rf(,,/D for narrow levels), 
and the transmission coefficient for all other decay processes from the compound nucleus 
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is denoted by T'. Over an energy interval within which the levels have uniform properties 
the fission probability of the compound nucleus is 
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For a double-humped fission barrier, the fission transmission TF can be expressed in 
terms of coefficients for transmission across the two peaks A and B (see figure 1 )  of the 
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Figure 1 .  Schematic diagram of double-humped fission barrier as a function of deformation 
in the fission mode. 

double-humped barrier separately ; the coefficients are denoted by TA, TB and can be 
written for narrow class-I1 levels associated with the secondary well of the barrier as 

in which fII(A) is the average width for coupling ofclass-I1 states to the normally deformed 
class-I compound states, rII (B)  is the average fission width of the class-I1 states, and DI1 
is their average spacing. The fission transmission coefficient TF for the compound state 
formed from coupling the class-I and class-I1 states is (Lynn 1968, Weigmann 1968) 

- -  

in the neighbourhood of a typical class-I1 level (ignoring other class-I1 wings and back- 
ground effects). The average fission transmission over the energy interval D,, is 

On  substitution of this into equation (1) the result 
" 
I A ~ B  P, = 

TAT,+ T'(TA+ TB) 
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is achieved : this is a result that is commonly employed for analysis of fission probability 
measurements to find fission barrier parameters. 

Equations (4) and ( 5 )  are here given implicitly in terms of the strong damping 
situation, in which TA,B have the Hill-Wheeler form 

in which VA,B are the barrier heights and ha,,, their tunnelling parameters ; the equations 
are more general, however, if TA,B are given the narrow interpretation of equations (2). 

2.2. E f e c t  of class-II structure on the averagejssion probability 

At low energies, in particular below particle emission threshold, the transmission 
coefficient T' can be very small, being limited essentially to electromagnetic radiation 
processes, and can be exceeded greatly by the average fission coefficient TF even well below 
the barrier height. In these circumstances the detailed class-I1 structure of TF can be 
significant ; if the bulk of the strength of TF is concentrated in a narrow energy interval 
about the class-I1 level, there can be considerable energy intervals in which T' is of the 
order of or greater than TF, and the average fission probability PF may be considerably 
decreased in consequence. In the neighbourhood of a single class-I1 level the fission 
probability is 

TA TB P -  
- (E,,-E)' (471'T'/'D;)+ TATB+$T'(TA+ TB)2 

If this simple lorentzian form is averaged over D,,, the average fission probability 

(7) 

where 
I T' 

is obtained. 
Above the lower ofthe two barrier peaks the typical width ofa class-I1 stateapproaches 

the class-I1 level spacing and the result of equation (8) will be very nearly that of the 
(structureless) equation (5 ) .  Likewise, a long way below the barrier peaks the fission 
transmission coefficient, as expressed in equation (3), will be almost everywhere much 
smaller than the radiation transmission T' (except when r , I (A)  = ra(B)) and equations (8) 
and ( 5 )  will again give similar results. In the intermediate energy region, however, the 
result of equation (8) can be very different from that of (5 ) ,  and this is shown numerically 
for some typical sets of barrier parameters in figure 2. These indicate that in some cases 
the height of the fission barrier can be over-estimated by +MeV or more by the uncritical 
use of equation (5 ) .  

For uniform class-I1 levels the fission probability can be found exactly for the many- 
level situation in which the fission transmission coefficient is a sum over a long sequence 
of terms of the type in equation (3), the energy levels E,, being spaced uniformly at 
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E,,, (MeV) 

Figure 2. Fission probability below particle separation energies calculated from equations 
(8) and ( 5 ) .  Full curves A, B, C are calculated from the structure-based theory (equation (8)) 
with barrier parameters V, = 5.9 MeV, hw, = 0.9 MeV, hw, = 0.6 MeV, and V, = 5.3 MeV 
(curve A), 5.1 MeV (curve B) and 4.9 MeV (curve C). Broken curves A’ and C’ correspond to 
the parameters of A and C but are based on the less exact theory (equation (5)) .  The radiation 
transmission coefficient employed was T, ,= 3.33 x eEi0’5575. 

intervals of DIl. The result is derived briefly in the appendix for the general case of partial 
damping. In this case the fission transmission coefficient is assumed to be composed of 
a direct and an indirect term 

TF = TD+ TT;ndr 

of which only the indirect term possesses the class-I1 compound structure. Under these 
assumptions we find 

where TAbs is the probability for absorption in the secondary well while attempting to 
penetrate the barrier. In the limit of no damping where TAbs = 0 equation (9a) reduces to 
the expected expression 

- 1 p, = D 
TD+ T ’  
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In the other limit of complete damping, where TAbS = TA and T, = 0 we find 

This expression is illustrated in figure 3 for certain sets of barrier parameters and is 
compared with the expression (8). As expected, it is higher than (8) but only by about 
10 % at the most. 

01 

4 
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Figure 3. Fission probability calculated for single class41 level (chain curve) and many 
class41 level (full curve) approximations. Barrier parameters are V, = 5.5 MeV, 
hw, = 0.9 MeV, hw, = 0.6 MeV, and V, = 5.5 MeV (curves A), V, = 5.0 MeV (curves B) 
and V, = 4.5 MeV (curves C). 

2.3. Effect of statistical fluctuations i n  class-1 levels 

It is well known that the true averages of decay probabilities over many levels cannot be 
written accurately in the form (1) ifthe partial widths for the decay processes in individual 
levels fluctuate statistically about the mean partial widths (Lane and Lynn 1957). In the 
present case where T is a radiative process the individual total radiative widths are 
expected to be essentially constant from level to level, whereas the fission widths (sub- 
barrier fission with only one transition state effective) are expected to have a Porter- 
Thomas (1956) distribution about their mean value as given by equation (3) (Bohr 1956) 
and the result of Lane and Lynn (1957) can be taken over, giving 

P -- TF Y (104 ‘-TF+Ty 
with 

= ( 1 +$I {I - (2) 1’2 exp(g’’erfc{(&) 1 / 2 1  1 (lob) 

The numerical values of the fluctuation factor Y lie between unity (for very large or 
small ratios of TF to T,) and 0.68 (for TJTF 0.6). 
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An accurate assessment of the effect of statistical fluctuations on the average fission 
probability over a single class-I1 level requires numerical integration of equation ( l o b )  
with equation ( 3 )  (or its generalization over many class-I1 levels) substituted for TF, but 
a simple semi-quantitative discussion can be given. In the important sub-barrier regions 
of interest equation ( 7 )  will vary from very small values to  a peak value of near unity in 
traversing- a class-I1 level. The half-width of this lorentzian variation is measured across 
the points where TF = T,. The effect of statistical fluctuations is to  lower the fission 
probability curve to less than 70% of the uniform’ model value in just this half-width 
region and thus reduce the effective width of the curve to about 70% of the uniform 
value. The average value of the fission probability is proportional to the half-width of 
the curve and is lowered in proportion. This approximate 70 % factor is a lower limit 
on the reduction of the average fission probability since the tails of the curve are not 
lowered to  the same extent. 

2.4. Statistical fluctuations of class-I1 levels 

For the model of pure class-I1 vibrations (no damping in the secondary well) the 
expressions so far derived are adequate ;the class-I1 levels a1.e not complicated compound 
levels in this case, but, rather, pure class-I1 vibrational levels, and their widths r I I ( A )  and 
r I I ( B )  can be deduced either from statistical theory expressions (Lynn 1969, Bjsrnholm 
and Strutinsky 1969) or, inore exactly, from numerical computations of transmission 
through a double-humped barrier (Back et a f  1971, Wong and Bang 1969, Cramer and 
Nix 1970). If experimental resolution is insufficient to resolve the vibrational resonances, 
the analysis of fission probability should employ the strong coupling expressions, 
equation (8) or (Sc), but if these resonances can be resolved then it is sufficient to  use the 
simple expression (9b). When damping in the secondary well causes the mixing of these 
simple vibrational levels into more complicated class-I1 compound levels, the question 
arises of statistical fluctuations of the class-I1 widths about local mean values. 

Such fluctuations are expected theoretically to  be of the Porter-Thomas form (in 
sub-barrier fission with a single transmission state). Two possibilities must still be 
distinguished. One is that under certain kinds of simple damping the coupling and 
fission widths r l l ( A )  and may be correlated, while the other (which has certainly 
been observed experimentally, eg in slow neutron-induced fission of 240Pu, Migneco 
and Theobald 1968) is that of no correlation between these widths. 

Analytical expressions for the average fission probability incorporating such statistical 
fluctuations have not been sought. Instead, numerical averages of equation (8) with 
values of T A  and TB chosen by selection using pseudo-random numbers from Porter- 
Thomas distributions have been carried out. In the sub-barrier energy range of interest 
the values of fission probability resulting from equation (8 )  are reduced by a factor that 
can be as low as approximately 0.6 in the case of uncorrelated widths T I l ( A ,  and TIIce,, 
however, in the fully correlated case there is no reduction factor. 

2.5. Very low excitation energies : the perturbation regime 

At very low excitation energies the width of the lorentzian expression (3) becomes 
substantially less than the spacing of the class-I levels, b,. In this case the coupling of 
class-I and class-I1 levels is described adequately by first-order perturbation theory 
(Lynn 1968) which also implies correlation properties in the excitation and decay of the 
compound nucleus states. It has been assumed implicitly in the previous sections that 
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the initial excitation of the compound states is independent of their decay mode. If the 
compound nucleus is initially excited through components of the wavefunction of class-I 
type (neutron excitation, transfer reactions of(d, p), (t, p) type etc) then in the perturbation 
regime there will be an anti-correlation between excitation probability and fission decay 
width. The perturbation expressions for the fission widths are, for the quasi-class-I 
states 

and for the quasi-class-I1 state 

Widths for excitation of these states are proportional to 

for quasi class-I states, and 

for quasi-class-I1 states. In addition to the prompt fission expressed by equations (1 1) 
and (12) it is usual that measurements of fission yield include delayed fission from low- 
lying class-I1 isomer states. Thus the radiation widths cascading to these states must be 
considered in calculating the fission probability. These widths are 

Of the radiation through class-I1 states given by these widths only a certain fraction will 
result in fission while the remainder will follow a radiative cascade chain to the normal 
ground state of the compound nucleus. The branching ratio for delayed fission is 
denoted by b,,,,. 

The probability of fission (prompt plus delayed) is given by 

where the sum over A‘ includes all quasi-class-I levels from E I I I  - D,,/2 to EAII + DII/2. 
Equation (1 7) can be computed readily, the prescription 

being adopted. 
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A typical computation of this probability is given in figure 4. The radiation widths 
for both class-I1 and class-I states have been computed from the photonuclear giant 
resonance model (Brink 1955). 

IO+ '-21, ' ' ' ' -1.0 ' ' ' ' ' 0 ' 
E-4 (MeV) 

Figure 4. Fissionprobabilitycalculatedfor theperturbation theory(fullcurve)(equation (17)). 
Parameters are V, = V, = 5.5 MeV, ho, = 0.9 MeV, ho, = 0.6 MeV; E,, (ground state of 
secondary minimum) = 2.5 MeV. Radiation widths calculated from Brink giant resonance 
theory. The broken and chain curves are calculated from equations (8) and (5) respectively. 

3. Examples of interpretation of data 

3.1. Fission decay of even compound nuclei 

Even (deformed) nuclei are characterized by the energy gap of the order of 1 MeV between 
the lowest rotational band associated with the ground state (K" = 0') and the more 
complex states. This characteristic is expected to extend to the transition states associated 
with the barriers at greater deformations, with the exception that the outer barrier of the 
actinides is believed to have a mass asymmetric deformation which should aIlow the 
octupole vibration state (K" = 0-) and its associated rotational band (I" = 1-, 3-  etc) 
to be nearly degenerate with the 0' band. Sub-barrier fission in even nuclei is expected 
to be dominated therefore by the fission decay of the compound nucleus states of spin 
and parity O+, 2+ ,  4+ . . . , with a minor contribution from the 1-, 3 - ,  5 -  . . . states. 

As an example of the application of the analysis described in $2 we use the data on 
fission of 242Pu through the 2 4 0 P ~ ( t ,  pf) reaction (figure 5).  The relative weights for 
excitation ofthe states ofdifferent spin and parity in the (t, p)reaction have been calculated 
by Cramer and Britt (1970) : they peak at  5 to 6 units of angular momentum. In the data 
on the 2 4 0 P ~ ( t ,  pf) reaction an inflection appears at about 4.6 MeV; this is interpreted as 
a damped vibrational resonance based on the 0' rotational band associated with the 
secondary well in the fission barrier. A model of the class-I1 structure has therefore been 
based on such a vibrational structure (the direct contribution TD being neglected). In 
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Figure 5. The fission probability in the reaction 2 4 0 P ~ ( t ,  p f )24*P~.  Data are from Back and 
Britt (to be publishid). Calculated curves are for V, = 56MeV,  hw, = 1.0MeV. 
V, = 5.1 MeV, hw, = 0.7 MeV. The damping half width for vibrational levels is 0.1 MeV 
for curve A and 0.025 MeV for the curve B. Curve C is calculated for strong damping. The 
effect of Porter-Thomas fluctuations in the class-I levels is not included; thus the barrier 
could be about 0.05 MeV lower than the calculation implies. 

this model we have for the local average widths of class-I1 states (of one spin and parity) 

where the subscript U denotes the vibrational resonances (separated, for each spin, by the 
vibrational energy in the second well, hw,,). The energies E,, of the same value of U but 
different spin, are separated by the rotational energies for the spin sequence O',  2' etc: 

h21(1+ 1)  
241 ' 

&(I+) = E,(O+)+ 

and the value 3.5 keV has been assumed for the rotational constant h2/24,,. Similarly 
the barriers governing the widths r , ( A ) ,  ru(B) (through equations (2) and (6)) are separated 
by rotational energies governed by rotational constants h2/29A (assumed 4 keV) and 
h7/24 (assumed 2.5 keV). Individual class-I1 widths are randomly selected from 
Porter-Thomas distributions with mean values given by (19,20) and the results are used 
in equation (8). For any given energy the mean fission probability P ,  is calculated from 
100 trials with'this procedure. 
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In the case of Pu nuclei it is believed that barrier B is about 0.5 MeV below barrier A. 
With this assumption it is found that a fit to  the 240Pu(t, pf) data can be achieved with 
V, = 5.6 MeV and barrier penetrability characteristics hw, = 1.0 MeV, hw, = 0.7 MeV. 
The radiation width for this fit has been calculated from Brink's (1955) photonuclear 
model ; with r G  = 4 MeV, E, = 13 MeV for the electric dipole giant resonance constants 
and the level density model of Gilbert and Cameron (1965) the radiation width of the 
resonances of the 241Pu neutron cross section can be reproduced, and in the region of 5 
to  6 MeV it is found that the radiation width can be represented by 

3.2. Fission decay of odd-mass nuclei 

The strong spin and parity selection rules that govern sub-barrier fission of an even 
compound nucleus are not expected to  operate (except possibly in a very attenuated way) 
in the fission of odd-mass or odd nuclei. There is still expected to  be an energy gap in the 
low-lying spectra of odd-mass nuclei, in which the level density does not show the strong 
exponential type of rise with energy characteristic of higher excitations, but this will be 
rather densely filled (especially at  deformations corresponding to fission barrier peaks) 
with single quasi-particle states of varying spin and parity and their associated rotational 
bands. The available evidence suggests that the density of states in this low energy region 
is, for odd-mass actinide nuclei, perhaps an  order of magnitude higher at  barrier A than 
at normal deformation and at  higher energies a factor of three to  five higher. A very 
crude numerical representation (Lynn 1973) of the barrier A density has been suggested 
to be 

with 
pA(E) = 2.0 eEirA- 1.25, 

= 2.0 eEirA + 3.75 

ifO<E<0.5, 

if E > 0.5 

and c = 6.1, T ,  = 0.39. At barrier B it is believed that this density will be lower; for the 
purposes of the calculations here it is taken to  be one half of the barrier A density. From 
these level density functions, barrier transmission functions can be computed ; at 
sub-barrier energies a suitable approximation is 

2745 - V,) 
~ X P (  ) (24) 

- (J + f)' 
TA(J") = (25+ 1) exp 

while above the barrier 

++r2exp ( E  - (;=;;) - + . . . ] . 
Equivalent formulae are used for TB. 

These equations have been applied to the analysis of the fission of 237Np excited 
through the 236U(3He, d) reaction. Back and Britt have calculated the distribution 
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function for excitation of the states of various angular momentum in the compound 
nucleus ; it is peaked at  J - 3. The radiation transmission function is calculated from 
Brink’s electric dipole giant resonance model and Gilbert and Cameron’s recommenda- 
tion for the level density parameter, to be 

(a here is for the excited compound nucleus and will be of the order of 6). The result for 
the fission probability, ignoring statistical fluctuation effects is shown in figure 6 for the 
choice of barrier parameters : 

V, = 5.85 MeV, 

V, = 5.75 MeV, 

hw, = 0.8 MeV, 

hw, = 0.8 MeV. 

t 

E,,, (MeV) 

Figure 6. Fission probability in the reaction 236U(3He, dQ237Np. Data are from Back and 
Britt (to be published). 

Allowance for statistical fluctuations will probably lower these barriers by up to  0.1 MeV 
to retain the quality of fit. Equally good fits could be obtained if either barrier is raised 
one or two hundred keV while the other is lowered a corresponding amount. 

3.3. Fission decay ofdoubly odd nuclei 

Very similar considerations apply to doubly odd nuclei as to odd-mass nuclei. In this 
case however we assume that the barrier level densities are represented by 
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Most of the odd actinide nuclei have neutron separation energies below the fission 
barrier. Thus, analysis of the fission probability data in the barrier region requires a 
knowledge of the competing neutron transmission function for these nuclei. A simple 
statistical expression has been developed for this (Lynn 1973); the result is shown in 
figure 7. 

E-S, (MeV) 

Figure 7. Neutron transmission coefficient for neutron emission from odd compound 
nuclei. 

As illustration of the analysis of data on the fission of odd nuclei we take 238Np, 
excited in the 237Np(d, p) reaction. The angular momentum probability function peaks 
in the region of J - 3. The data and a number of attempted fits are shown in figure 8. 
The most satisfactory of these is based on the barrier parameters 

V, = VB = 6.18 MeV 

ho, = 0.8 MeV, h o B  = 0.6 MeV. 

With allowance for statistical fluctuation effects it is possible that barrier A may be almost 
0.1 MeV higher while ho, is probably closer to 0.7 MeV. 

4. Discussion 

I t  has been shown in this paper that fission decay of the compound nucleus can be criti- 
cally dependent on the detailed intermediate structure due to the levels associated with the 
secondary well of the double-humped fission barrier. With due account of this structure 
estimates of fission barrier heights from analysis of sub-barrier fission data can be up to 
$ MeV lower than those obtained by simply averaging the fission widths over the inter- 
mediate structure. 

The examples of such analysis given in 5 3 reveal an important odd-even effect in 
barrier heights. Thus 242Pu has been shown to have a barrier height of about 5.5 MeV, 
while the neighbouring nuclei 241Pu and 243Puare knownfrom the relevant fast neutron- 
induced fission cross sections to have barriers of approximately 5.8 MeV and 5.7 MeV 
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E,,, (MeV) 

Figure 8. Fission probability in the reaction 237Np(d, P ) * ~ * N ~ .  Data from Back et al(l971). 
Calculation parameters are: 

curve A :  V, = 6.48 MeV, ha, = 0.8 MeV, V, = 5.98 MeV, ho, = 0.8 MeV; 
curve B :  V' = 6.18 MeV, hw, = 0.8 MeV, V, = 6.18 MeV, hw, = 0.6 MeV; 
curve C: V, = 6.28 MeV, hw, = 0.8 MeV, V, = 6.18 MeV, hw, = 0.8 MeV.; 
curve D:  V, = 6.28 MeV, hw, = 0.8 MeV, V, = 5.88 MeV, hw, = 0.6 MeV. 

respectively, ie about 0.2 to 0.3 MeV higher. Such a difference (but of magnitude closer 
to 0.4 MeV) is also apparent for the neptunium nuclei. This effect appears to be a general 
one, and had already been noticed by Back and Britt as likely qualitatively from an 
examination of their fission probability data ; while it is also strongly indicated in the 
Am nuclei (Lynn 1973), for which 242Am and 244Am have barriers V, N 6.4 MeV (from 
fast neutron-induced fission cross sections), and 243Am obviously has a barrier much 
below its neutron separation energy (6.4 MeV), because 242Am is extremely fissile to 
thermal and resonance region neutrons. These matters are more fully discussed in papers 
in preparation by Back and Britt, and Bjmnholm and Lynn. 

Appendix. Derivation of the multilevel formula 

Instead of a single class-I1 level, as used in the derivation of equation (8), we assume a 
spectrum of equidistant class-I1 states of uniform strength. This gives rise to a partial 
fission width of the form 

m 1 
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where 

and 

x = E-E,. 

The half width of the class-I1 structures is denoted 

('4.3) 

The sum in equation (1) can be split up in three parts, namely 

+ 5- 1 1 - 
KD, X2  + W2 + (nD,, + X)' + W2 (nD,, - X)2 + W2 

x , w - l  
('4.4) 

- - 1 +-E 1 [(.+--I-) x . w - l  -(n+-+is) 

X 2 +  W2 21WDIIn=, 4, DII Dl1 

Each of the four sums is a series expansion for the digamma function tj(Z), which has the 
form 

" 1  
, ,= ln+b '  

$ ( l+b)  = - 1 - ( '4 .5 )  

- 
Using the relation tj(2) = $ ( Z )  we find 

Employing the relations 

1 
$(l-Z) = $(Z)+ncot(xZ) and $ ( l+Z)  = $ ( Z ) + ,  

equation (6) reduces to 

('4.7) 
K n~in(2nX/D,,) -i sinh(2nW/D1,) 

cosh(2n WID,,) - cos(2nX/D1,) 

TF sinh(2nW/D,,) = -  
2n cosh (2~  WID,,) - C O S ( ~ ~ X / D , , )  

Averaged over a class-I1 resonance this is normalized to  give the expected result 
rF/D, = TF,'2x. The application of this formula to the calculation of fission probability 
in the general case that includes partial damping can be treated in a simple phenomeno- 
logical way. For partial damping we assume that the fission transmission coefficient 
can be split up into two terms, one of which comes from direct penetration of the fission 
barrier, while the other comes from the part which is absorbed in the second well, takes 
part in the class-I1 compound motion and finally fissions by penetration of the second 



Sub-barrier fission probability for a double-humped barrier 409 

barrier. It is evident that only the second contribution contains the structure of equation 
(A.8). We therefore write the total transmission coefficient in the following way: 

T B  sinh(2n WID) 
TF = T D +  TAbsp 

T A  + T B  cosh (2~  W/D)-COS(~ZX/D)' 

Here TAbs is the probability for absorption in the second well. 
The average fission probability is given by the integral 

T B  sinh(2n W/D) 
= ' DIl SD1"' - Did2 ( TD+ TAbs (TA + TB) [c0sh(2n W/D) - COS(~TCX/D)] 

T B  sinh(2nW/D) + T ) - '  dx ("+ TAbS(TA+ TB) [ c o s ~ ( ~ ~ W / D ) - C O S ( ~ T ~ X / D ) ]  

where we have used 
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